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Abstract

We study the relationship between access to water resources and local violence in

Africa. Due to limited irrigation, rural communities rely on rainfall, rivers, and

lakes for their economic needs. Rainfall scarcity can make access to water from

rivers and lakes more valuable, thereby generating conflicts in rural settings. We

explore this hypothesis by integrating granular data on the river network with

high-resolution data on rainfall and violent conflict events in Africa from 1997 to

2021. We find that reduced rainfall in a location leads to more conflict in neighbor-

ing areas that are water-rich and located upstream along the river network. These

are the sites that exert more control over the river flow. The effect is more pro-

nounced in regions experiencing a long-term decline in water presence. Consistent

with the proposed mechanism, conflicts concentrate in areas with higher returns

to water access, as proxied by the presence of agricultural production. Addition-

ally, the impact is more pronounced in regions with unequal water distribution

among ethnic groups, highlighting how cooperation costs are an important fric-

tion preventing peaceful sharing of water resources. In terms of policy responses,

we find that the effects tend to be mitigated in countries with stronger democratic

institutions, better rule of law, higher state capacity and less corruption.
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1 Introduction

Access to water is essential for human life and economic activity. Estimates suggest
that four billion people experience at least one month per year without access to suf-
ficient water (Mekonnen and Hoekstra, 2016). Climate change is likely to exacerbate
this situation, thereby drawing attention to the potential for conflicts over access to
water (United Nations, 2023; World Economic Forum, 2023). This is a natural concern,
given the role of climatic shocks and competition over resources in fostering violence
(Burke, Hsiang and Miguel, 2015; McGuirk and Burke, 2020). However, we lack sys-
tematic evidence on whether, and how, climatic shocks can induce conflicts over water
resources.

In rural Africa, where the economy is largely dependent on agriculture and pas-
toralism, this issue is particularly salient. Due to the lack of large irrigation infrastruc-
tures, these economic activities rely mainly on rainfall, wells and surface water. In this
context, those residing close to rivers and lakes can use surface water for their needs.
For instance, farmers construct irrigation channels from rivers or practice recession
agriculture, which involves cultivating lands enriched by river sediments. Pastoralists
similarly exploit these water bodies as drinking points for their livestock.

This paper investigates systematically the occurrence of conflicts over water re-
sources in Africa from 1997 to 2021. There are specific locations and time periods
where we expect conflicts over water resources to occur. They are more likely to arise
during years of low rainfall, when the value of accessing surface water increases. In
such scenarios, drought-affected individuals are likely to seek water access in adjacent,
water-abundant cells. Additionally, those experiencing a drought primarily contend
for access to water in upstream locations, as upstream they can exert more control over
the river flow and water quality is generally better. Summing up this argument, we
expect that a location is more likely to experience conflict over water resources if it is
water rich and a drought happens in a region located downstream.

In our empirical analysis, we bring this argument to the data. Utilizing cells of
0.5◦ × 0.5◦ degrees in latitude and longitude as units of observation, we measure
the incidence of conflict using geocoded event data across all African countries from
Armed Conflict Location Events Data Project (ACLED), which provides details on the
date, location, and type of conflicts. For assessing surface water resource distribution,
we employ hydrological data from the Global Floods Awareness System (Harrigan
et al., 2020). Additionally, we rely on the HydroBASINS dataset (Döll et al., 2003) to
determine for each pair of cells their up-downstream relationship along the rivers net-
work.
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For each cell, we define its neighborhood as all surrounding cells within a 180 km ra-
dius and assign a measure of water richness to the cell itself. Our preferred measure is
Water Discharge, representing the annual average water flow through a cell. We assess
whether the impact on violence of low rainfall in a downstream neighboring cell is
amplified in cells that are water rich. By employing geographically disaggregated data,
we can estimate a specification that includes grid-cell fixed effects, to account for local
time-invariant factors, and country-year fixed effects, to control for common macro-
level factors that vary by country and year. Our approach also allows us to control for
any direct effects of rainfall occurring in the grid-cell itself.

Our main result is that rainfall shocks in a downstream cell increase the likelihood
of conflict differentially more in locations that have higher Water Discharge. Our pre-
ferred specification implies that when a downstream cell experiences a rainfall shock,
the likelihood of conflict is 0.6 percentage points larger for a cell with high Water Dis-
charge, compared to one with low Water Discharge, corresponding to 7.30% of the con-
flict incidence mean.1 These findings are robust to alternative coding of the water
richness measure, to using alternative conflicts data and to controlling for other rele-
vant confounders like temperature and population.

In light of these findings, we further delve into the economic incentives behind
conflicts over water resources. We expect a higher likelihood of conflict in areas where
the benefits of water access are larger. Given Africa’s predominantly agrarian econ-
omy, water exploitation is primarily linked to agricultural activities. Therefore, cells
with significant agricultural output are likely to offer higher returns from water ac-
cess. To investigate this channel we split the sample between cells with high and low
agricultural production. We find that, consistently with our expectations, the effects
are driven by places characterized by higher presence of agriculture.

Surface water resources may be distributed unequally across space, yet individ-
uals from different areas can cooperate and manage them together. We thus expect
that conflict arises in contexts in which the costs of cooperation are higher. To explore
this possibility, we use data from Giuliano and Nunn (2018) to identify the linguistic
groups residing in each cell. Ethnic grievances might imply too high cooperation costs.
Indeed, we observe that effects are stronger in areas with more unequal distribution
of water resources across different ethnic groups, measured as polarization, Gini and
Theil indexes. This evidence suggests that high cooperation costs contribute to the
failure of peaceful water sharing and lead to an increased reliance on violence.

Climate change poses a multifaceted threat to water resources, not only through

1For this quantification high discharge corresponds to the third quartile of the discharge distribution,
whereas low discharge corresponds to the first quartile level.
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more frequent droughts but also via long-term desertification processes. In order to
examine this extended impact, we have developed a simple metric for long-term wa-
ter depletion. We find that the effect of droughts on conflict over water resources is
stronger in regions where water availability has diminished over the past forty years.
The findings suggest that adaptation costs exacerbate the problem, and that conflict
over water resources may become a more urgent issue as climate change intensifies
the desertification process in certain areas.

In the final section of the paper, we explore the ability of formal institutions to
mitigate conflicts induced by climate change. Stronger state presence might be essen-
tial not only for the effective redistribution of resources but also for the development
and implementation of infrastructural solutions designed to mitigate crisis situations.
We look at whether countries with better institutional characteristics are less likely
to experience conflict over water resources. Considering various measures of formal
institutions, such as democratic governance, rule of law, absence of corruption and
government effectiveness, reveals a consistent pattern: conflicts triggered by droughts
are primarily a concern in countries with relatively weaker institutions.

Our research contributes to the literature on climate and conflict by presenting new
evidence that identifies a precise mechanism through which climate change (Hsiang
and Burke, 2014; Burke, Hsiang and Miguel, 2015) and weather shocks (Miguel et al.,
2004; Sarsons, 2015; Almer et al., 2017; Unfried et al., 2022) influence local violence.
Recent works by Eberle et al. (2020) and McGuirk and Nunn (2020) have emphasized
the impact of heat and changing rainfall patterns on conflicts between farmers and
pastoralists. In our study, we focus on the effects of low rainfall years, which are
becoming more frequent in Africa due to climate change, and how they increase com-
petition for accessing and controlling surface water resources. A key aspect of our
analysis involves investigating spillovers, wherein low rainfall in one area leads to
heightened conflict in water-rich territories located upstream. By identifying this spe-
cific mechanism, we provide insights into the spatial spillovers observed in existing
climate-conflict research (Guariso and Rogall, 2017; Harari and Ferrara, 2018). In do-
ing so, we complement the specific mechanisms of conflicts diffusion studied by König
et al. (2017) and McGuirk and Nunn (2020).

We also speak to the literature on the determinants of conflict, which has focused
on the importance of ethnic or social factors (Esteban et al., 2012; Rohner et al., 2013;
Depetris-Chauvin and Özak, 2020; Moscona et al., 2020; Arbatlı et al., 2020), of histor-
ical factors (Besley and Reynal-Querol, 2014; Michalopoulos and Papaioannou, 2016;
Depetris-Chauvin, 2015), and economic factors, especially shocks to resources value
and conflict opportunity cost (Dube and Vargas, 2013; Berman et al., 2017; McGuirk
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and Burke, 2020; Adhvaryu et al., 2021). We demonstrate that controlling and access-
ing surface water resources can be a determinant of conflict.

In a nutshell, our paper contribution to the literature of the economics of conflict
is manifold. To the best of our knowledge, we are the first to show that the control of
surface water resources is a mechanism linking climate shocks and conflict. Addition-
ally, we find that, under unfavorable climatic conditions, water can induce a resource
curse. Finally, leveraging on new fine grained data, we document how the rivers net-
work structure can shape the spatial spillovers observed in existing climate-conflict
research.

The remainder of the paper is organized as follows. Section 2 provides a descrip-
tion of the context and of how rivers and lakes’ water is used for economic activity in
rural Africa. In Section 3 we introduce our data sources and we detail how we build
the variables used in the analysis. Section 4 describes the empirical strategy and the
results of the paper. Finally, Section 5 concludes.

2 Background and Context

2.1 Using surface water resources to smooth water consumption

Water is an essential resource for agriculture, pastoralism, and daily consumption. In
rural Africa, the absence of infrastructures such as piped water and irrigation sys-
tems necessitates heavy reliance on rainfall, wells, and surface water. In this context,
we provide examples illustrating how households utilize surface water resources for
their economic activities and everyday life. Our aim here is to illustrate concretely the
significance of controlling water resources.

An example is flood-based farming systems (for more details refer to Puertas et al.,
2021). This agricultural practice capitalizes on the nutrient-rich soil deposited by river
floods. Another variant of this approach is the use of inundation canals, where land
is irrigated through canals supplied by temporary high water levels in rivers. These
methods become particularly crucial during low rainfall periods, stressing the impor-
tance for farmers to maintain control over land near surface water sources, enabling
them to effectively utilize these agricultural techniques.

In general, the construction of canals plays a vital role in bringing water from rivers
to arid regions. An example of this is the initiative undertaken by the World Food Pro-
gramme (WFP) in Kenya, where paved canals have been built from the Turkwell River.
These canals efficiently channel water to farms in neighboring areas, benefiting over
45,000 farmers. As a result, farmers can effectively irrigate their fields even during
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seasons with limited rainfall (World Food Programme, 2023). Farmers located near
rivers have the advantage of lower canal construction costs and can harness the water
flowing through them to a greater extent.

Likewise, water resources are crucial for pastoralists. Rivers and lakes act as natu-
ral hydration points for livestock, and the areas around these water bodies often main-
tain vegetation even in dry seasons. This availability of vegetation enables herders to
provide reliable nourishment for their livestock.

Securing land along a river grants farmers enhanced access to water resources, yet
such control can significantly affect water availability further downstream. One ex-
treme example is the Omo River which flows between Ethiopia and Kenya (Climate
Diplomacy, 2023c). In the rural communities of the Lower Omo River Valley, a com-
bination of flood recession agriculture and pastoralism is practiced, both of which
depend on the seasonal floods of the Omo River to replenish crop and grazing lands
along the riverbank. The establishment of irrigated sugar plantations in Ethiopia (sit-
uated upstream) has the potential to impact the water availability in these regions, as
water diversion for these plantations can disrupt the natural flow downstream.

2.2 Climate change and conflicts over water resources

Freshwater resources may be distributed unequally, yet different groups can cooperate
and manage them together. For instance, according to the hydraulic theory, the forma-
tion of early states was partly motivated by the necessity of institutions for large-scale
irrigation projects.2 Moreover, a symbiotic system has often existed between farmers
and herders, with herders migrating to farmers’ land during dry seasons. This tradi-
tional arrangement, especially when farmers’ land is situated near rivers, can be seen
as a norm that enables efficient sharing of water resources among different groups
during periods of limited rainfall.

However, climate change-induced rainfall scarcity in Africa is undermining these
established water-sharing institutions, leading to their deterioration. For instance,
herders migrate earlier to water-rich lands, causing conflicts with farmers still culti-
vating crops (Eberle et al., 2020 and McGuirk and Nunn, 2021). Additionally, farmers
may extract more water for irrigation during rainfall shortages, reducing downstream
water flow. As recently happened in Laikipia county, in Kenya, or in Fayoum, in north
Egypt, this can induce groups located downstream to resort to violence to destroy the
irrigation infrastracture or scare the farmers upstream, especially if the government
does not take actions (Nation, 2023, Monitor, 2022). Climate change also creates new

2See Allen et al. (2020) for econometric evidence supporting this theory in the case of ancient
Mesopotamia.
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situations requiring cooperation over water resources without preexisting arrange-
ments. A notable example of this is observed when droughts force pastoral groups
to modify their migratory routes, often leading to competition with other pastoralists
over the same water sources. An illustration of this situation can be found in the Lower
Omo and Turkana region along the Kenyan-Ethiopian border. Local communities in
search of water and grazing land have expanded their ranges, leading to increased
proximity and frequent clashes with other groups over these resources. From 1989
to 2011, conflicts between the Nyangatom, Daasanach, and Turkana groups alone re-
sulted in over 600 direct deaths (Climate Diplomacy, 2023b).

3 Data

This section describes the data sources and the construction of the variables used in
the analysis. Our empirical analysis is based on a geo-referenced, annual panel that
divides the African continent into 10,229 grid cells (see Figure A.2). These grid cells
have a size of 0.5◦ × 0.5◦ degrees, equivalent to approximately 55 km × 55 km at the
equator. Throughout our analysis, the unit of observation is a cell-year pair.

3.1 Data Sources

Conflict Our study utilizes georeferenced conflict events from the Armed Conflict
Location & Event Data Project (ACLED) covering the period from 1997 to 2021 (Raleigh
et al., 2010). The ACLED data has no requirement for a specific number of fatalities
within a calendar year or for a conflict event. As a result, the ACLED data is very
apt for capturing smaller-scale, localized conflict events. ACLED gathers informa-
tion on conflict events from multiple sources, including regional and national media
outlets, NGOs, and humanitarian organizations. The ACLED data includes the date
and geographic coordinates of each event. We retain only events that are precisely
geolocalized. In our main analysis, we consider only events categorized as "battles",
and "violence against civilians", excluding thereby less violent events like "riots" and
"protests". In fact, according to the mechanism we are considering when a shock oc-
curs, individuals tend to move upstream to access water resources, resulting in the
emergence of more lethal and intense conflicts compared to mere riots or protests.3

Figure A.3 reports the average yearly incidence for ACLED conflict data.
In some robustness checks, we use georeferenced conflict events from the Uppsala

3In Table A.4 we show that we do not observe any effect using riots or protests incidence as depen-
dent variables.
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Conflict Data Program (UCDP) (Sundberg and Melander, 2013) covering the period
from 1989 to 2020. In the UCDP data, conflict events are characterized as either two-
sided battles or one-sided attacks that fulfill specific criteria. In order to be included,
a conflict event must involve at least one fatality, and the conflict dyad (i.e., the pair
of actors involved) must have caused a minimum of 25 fatalities within at least one
calendar year during the series. Moreover, at least one of the actors involved must
be an "organized actor," such as a state or a politically organized rebel group or mili-
tia. These data are compiled following a two-step process, by which global newswire
sources are consulted first, and then confirmed consulting local/specialized sources,
such as translations of local news performed by the BBC, local media, NGO reports,
and field reports. Like ACLED data, UCDP data includes the date and geographic
coordinates of each event. We consider only precisely geolocalized events.4

By utilizing the date and geographic location (longitude and latitude) we are able
to assign each event to a specific cell-year pair. For both data sources, we aggregate
the information at the cell-year level. We code conflict incidence as 1 if any conflict
event occurred within a cell-year and as 0 otherwise.

Hydrology In our analysis, we include data on river discharge obtained from the
Global Floods Awareness System.5 River discharge refers to the volume of water pass-
ing through the section of a river per unit of time, measured in cubic meters per sec-
ond. The data we utilize provides daily average river discharge on a global scale, with
a spatial resolution of 0.05◦ × 0.05◦ decimal degrees. The data are produced by com-
bining information from satellites, in-situ measurements, and hydrological models.
Notice that the quantity of water reported in the data takes into account all types of
surface water bodies, including lakes, ponds, rivers and streams. We aggregate this
information at the cell-year level (see Figure A.4). To incorporate information on the
river network topology, we rely on the HydroBASINS dataset.6 This dataset offers a
shapefile of drainage basins, which are globally consistent geospatial units frequently
employed in environmental and hydrology studies. Each basin represents the land
area that collects and channels precipitation, such as a valley. The shapefiles are avail-
able at different levels of aggregation; we use level 7 as in Eberle (2020). We allocate
each cell to a specific basin based on the amount of water in the overlapping area.
Specifically, for every intersection between a river basin and a square grid cell, we as-

4To be more specific, our analysis includes only those events that have been geolocated with a mini-
mum precision of the town level (precision level 3).

5Accessible from Harrigan et al. (2020).
6Part of the HydroSHEDS environment and accessible from https://www.hydrosheds.org/;

for further details, see Döll et al. (2003).
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sign the cell to the basin if that particular intersection contains the greatest amount of
water. Then, we construct a matrix that describes the relationship between each pair of
cells along the rivers’ network exploiting the Pfafstetter coding system.7 This matrix
enables us to identify whether a pair of cells is connected upstream, downstream, or
not connected at all.8 We are the first, to the best of our knowledge, to use the Pfaf-
stetter coding system to pin down the upstream-downstream relationships between
uniform squared cells. This allows us to employ the standard units of observations
from the conflict literature and at the same time to integrate them with the spatial
structure imposed by the rivers network.

Rainfall Following Harari and Ferrara (2018) we use precipitation data from ERA5
(Hersbach et al., 2023). ERA5, a reanalysis dataset, offers comprehensive weather data
for the period 1959 through 2021. It provides data at various grid resolutions and
temporal resolutions as fine as 6 hours. The dataset is derived from a combination
of high-frequency observations collected from diverse sources, including weather sta-
tions, satellites, and probes. ERA5 represents a notable improvement over gauge data,
particularly in regions with limited weather station coverage like Africa. In fact, it is
important for us not to rely exclusively on raw gauge data for two reasons. Firstly,
due to the scarcity of weather stations across Africa, extensive interpolation would
be required, potentially resulting in artificial patterns of spatial correlation in weather
shocks. Secondly, the availability of gauge data itself may be influenced by the pres-
ence of conflict.

Other Data We assign ethnic groups to territories across the continent using the ge-
ographic distribution of linguistic groups from Giuliano and Nunn (2018). These data
are built by linking manually ethnic groups to languages and dialects; the geographic
distribution of languages and dialects is from Gordon and Grimes (2009). Addition-
ally, we use information about agricultural land cover from the replication package of
McGuirk and Burke (2020). Temperature data are from Hersbach et al. (2023). Pop-
ulation data are from Center for International Earth Science Information Network -
CIESIN - Columbia University (2018). Finally, state capacity indicators are taken from
Kaufmann et al., 2011.

7The Pfafstetter coding system is widely used in hydrology to determine the up-downstream rela-
tionship between rivers’ basins, see for example Verdin and Verdin (1999).

8See appendix Section A.1 for further details about the construction of the river network matrix.
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3.2 Variables Definition

For each cell of our grid, we define a neighborhood as all the cells in a 180 km radius.
We choose this buffer to be consistent with the seminal work of Harari and Ferrara
(2018). In the top panel of Figure A.1 we report an example of how we build a neigh-
borhood (all the highlighted cells) around the reference cell (in dark yellow). Then, as
a way of example, we overlap hydrographic data of a section of the Niger River with
our grid, showing how we establish which cells are upstream (orange) or downstream
(red) to the reference cell (see appendix Section A.1 for further details).

Water Richness We propose different definitions of water richness. Notice that these
measures change over time, because of the time-varying dimension of our hydrolog-
ical data. Our preferred measure of water presence is Water Discharge, a continuous
measure of water abundance corresponding to the natural logarithm of the mean
amount of freshwater present in a cell during a year (see Figure A.4). More precisely,
it is the sum of the water passing through the sections of all the rivers flowing in a
given cell, measured in cubic meters per second. In order to understand the impact of
shocks in places that are extremely water rich, we also consider two alternative mea-
sures using a simple dummy. Water Monopolist (see Figure A.5) is a dummy which
indicates cells that have the largest quantity of water in their neighborhood. To be
specific, Water Monopolist is equal to one for cell i in neighborhood n, if Water Discharge
of cell i is the highest of the neighborhood. Finally, Water Monopolist + (see Figure
A.6) requires the additional condition that a cell has abundance of water also in abso-
lute terms. Specifically, Water Monopolist + takes value one for cells which are Water
Monopolist and whose Water Discharge is above the median of the continent in a year.

Rainfall Shocks To identify rainfall shocks, we adopt the methodology outlined in
Burke, Gong and Jones (2015) and Corno et al. (2020). We utilize a long-term time
series spanning from 1959 to 2021, consisting of rainfall observations. For each geo-
graphical cell, we fit a gamma distribution to the calendar year rainfall data. This dis-
tribution estimation allows us to characterize the typical rainfall patterns for a specific
location. Using the estimated gamma distribution, we determine which location-years
experienced rainfall levels below the 15th percentile of the distribution. We code these
instances as rainfall shocks.

Ethnic Inequality in Water Access An imbalanced allocation of water among dis-
tinct ethnic groups could potentially hinder the sharing of this resource in case of
adverse climate shocks raising cooperation costs. To gain a better understanding of
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this process, we calculate various indexes that describe water allocation within each
neighborhood among different ethnic groups. Specifically, we use the geographic dis-
tribution of linguistic groups from Giuliano and Nunn (2018) and overlap it with the
shapefile of each cell’s neighborhood. For each linguistic group within a neighbor-
hood, we determine their water ownership. Finally, we calculate different statistics at
the neighborhood level based on the water ownership of each ethnic group. In partic-
ular, we compute polarization following the index proposed by Reynal-Querol (2002).
Differently from the original measure, which relies on population shares, our approach
considers water shares as a proportion of the total water quantity in a neighborhood.
Consequently, the index takes its maximum value if in a given area there are only two
groups owning 50% of the total water amount. As alternative measures to account for
inequality in water distribution between ethnic groups we compute the Gini and Theil
indexes. We report the spatial distribution of these three variables in Figure A.7.

4 Rainfall Scarcity and conflict over water resources

4.1 Empirical Strategy

Our objective is to test systematically the occurrence of conflicts related to water re-
sources at a local level. There are specific locations and time periods where we expect
conflicts over water resources to occur. They are more likely to arise during years of
low rainfall, when the value of surface water increases. It is in such cases that indi-
viduals affected by drought conditions are more inclined to seek access to water in
neighboring cells, particularly if these cells are abundant in water. Additionally, those
experiencing a drought primarily contend for access to water in upstream locations, as
upstream they can exert more control over the river flow and water is normally more
abundant and of higher quality. Summing up this argument, we expect that a cell is
more likely to experience conflict over water resources if it is water rich and a drought
happens in a cell located downstream.

We present here our baseline equation which estimates whether adverse rainfall
shocks in downstream territories have a differentially higher impact on cells that are
water rich.

yit = λ1Water Richit + λ2ShockDown
it +

βShockDown
it × Water Richit+

X′
itΓ + µi + µct + εit

(1)

Where yit is a dummy variable for conflict incidence in cell i during year t, Water Richit

is a time varying measure of water richness in a given cell, and ShockDown
it takes value
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one if a cell in the neighborhood located downstream to cell i is hit by a rainfall shock
during year t. We include in the regression cell fixed effects µi and country-year fixed
effects µct to account for time invariant cell characteristics and country specific yearly
shocks that might affect conflicts. X′

it are additional cell specific time-varying vari-
ables. In some specifications, we control for rainfall shocks happening in cell i, which
may have direct effects on local violence. We also show that results are unaffected by
including rainfall shocks happening in cells located upstream to i, and we allow them
to have differential impact depending on water presence (Water Richit). In sensitivity
analysis we include additional time varying controls, that we introduce in Section 4.3.
Our hypothesis is that if a drought happens downstream, water rich cells are more
likely to experience conflict. Thus, we expect β > 0.

4.2 Baseline Results

In Table 1 we present results with our preferred measure of water richness: Water Dis-
charge. Water Discharge corresponds to the average quantity of water present in a cell
during a given year. In column 1 we estimate the main regression equation 1, testing
our hypothesis that a cell is more likely to experience conflict over water resources if
it is water rich and a drought happens in a cell located downstream. The coefficient β

is positive and statistically significant at the 1% level. In column 2 we check whether
our hypothesis that only downstream shocks have an impact on conflict incidence is
valid interacting our measure of water presence with shocks happening upstream. We
cannot find any significant impact of upstream shocks on conflict. In columns 3 and
4 we control for any direct effect of rainfall shock happening in the cell, results are
unaffected. Finally, in column 5 we test whether groups located downstream and up-
stream have different incentives to fight when hit by a drought, including both shocks
in the same regression. We can appreciate how upstream shocks do not display the
same patterns as downstream shocks. Moreover, our coefficient of interest is very sta-
ble and, if anything, it becomes larger and more precisely estimated. Interpreting the
magnitude of the coefficient in our preferred specification (column 5) we have that
when a downstream cell experiences a rainfall shock, the likelihood of conflict is 0.6
percentage points higher for a cell with high Water Discharge, compared to one with
low Water Discharge,9 corresponding to 7.30% of the dependent variable mean. This
is in line with a predatory mechanism of seeking control over the water flow of the
river when the resource becomes scarcer. In Table A.2, we include the same specifica-

9For this quantification high discharge corresponds to the third quartile of the discharge distribution,
whereas low discharge corresponds to the first quartile level.
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tions of Table 1 but reporting spatially clustered standard errors, allowing for a spatial
correlation within a 500 km radius of a cell’s centroid and infinite serial correlation
(Conley, 1999). While the estimates become generally less precise, the coefficient β

from equation 1 retains statistical significance at the 5% level.

Table 1: Precipitation shocks and water discharge

Incidence (ACLED)
(1) (2) (3) (4) (5)

Water Discharge 0.0010 0.0007 0.0010 0.0009 0.0009
(0.0009) (0.0010) (0.0009) (0.0009) (0.0009)

Water Discharge × Shock Down 0.0011∗∗∗ 0.0011∗∗∗ 0.0012∗∗∗

(0.0004) (0.0004) (0.0004)
Water Discharge × Shock Up 0.0003 0.0003 -0.0002

(0.0005) (0.0005) (0.0005)
Shock Down 0.0008 0.0010 0.0009

(0.0017) (0.0018) (0.0018)
Shock Up -0.0018 -0.0024 -0.0014

(0.0020) (0.0021) (0.0021)
Shock Own -0.0005 0.0020 0.0000

(0.0017) (0.0016) (0.0017)

Cell FE ✓ ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201 0.08201 0.08201
R2 0.42101 0.42095 0.42101 0.42096 0.42101
Cells 10,228 10,228 10,228 10,228 10,228
Observations 255,700 255,700 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Water Discharge is the
natural logarithm of the average water discharge present in a cell during a given year. Shock is an indicator variable taking value
1 if a location experiences a drought (as defined in Section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in
parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

4.3 Sensitivity Analysis

Alternative Measures of Water Richness In Table 2 we estimate equation 1 using all
the three measures of water presence. Column 1 corresponds to column 5 of Table 1,
while in columns 2 and 3 we interact weather shocks with a binary variable. Specif-
ically, in column 2, Water Measure takes value one if a cell is the one with the highest
water discharge in its neighborhood during a given year. Finally, in column 3, we fo-
cus on cells that not only have the highest water discharge in their neighborhood but
also exceed the median value in the sample. This methodology effectively excludes
cells with minimal discharge, in particularly desert areas. In all columns, we observe a

12



positive coefficient for the interaction term between downstream precipitation shocks
and water presence. In cells with particularly high levels of water presence (column
3) a precipitation shock causes an increase in conflicts of 3.4 percentage points, which
corresponds to about 42% of the dependent variable mean. Reassuringly, all the three
measures aimed at capturing water richness deliver consistent results.

Table 2: Precipitation shocks all measures

Incidence (ACLED)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure 0.0009 0.0120 0.0151
(0.0009) (0.0098) (0.0106)

Water Measure × Shock Down 0.0012∗∗∗ 0.0181 0.0336∗∗

(0.0004) (0.0123) (0.0170)
Water Measure × Shock Up -0.0002 -0.0020 -0.0046

(0.0005) (0.0118) (0.0144)
Shock Own 0.0000 -0.0004 -0.0004

(0.0017) (0.0017) (0.0017)
Shock Down 0.0009 0.0049∗∗∗ 0.0048∗∗∗

(0.0018) (0.0015) (0.0015)
Shock Up -0.0014 -0.0018 -0.0018

(0.0021) (0.0017) (0.0017)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201
R2 0.42101 0.42101 0.42103
Cells 10,228 10,228 10,228
Observations 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Water Measure indicates
generically a measure of water quantity which varies between columns. In column (1) it is the natural logarithm of the average
water discharge present in a cell during a given year (Water Discharge). In column (2) it is an indicator variable equal to 1 if the
cell is the one with the highest water discharge in a neighborhood in a given year (Water Monopolist). In column (3) it is an
indicator variable equal to 1 if the cell is the one with the highest water discharge in a neighborhood in a given year and the
discharge is higher than the median level in the sample for that year (Water Monopolist +). Shock is an indicator variable taking
value 1 if a location experiences a drought (as defined in Section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in
parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Alternative conflict dataset In Table A.3 we replicate our baseline analysis using al-
ternative conflict data from the UCDP georeferenced Event Dataset (Sundberg and
Melander, 2013) that focuses on violence perpetrated by larger-scale and more struc-
tured groups. Our coefficient of interest remains positive, large and precisely esti-
mated in all three specifications.
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Alternative conflict definitions In Table A.4 we replicate our main regression results
using different conflict categories from the ACLED dataset. In column 1 we replicate
column 5 of Table 1, in column 2 we consider only battles (the most deadly type of
conflicts present in our data) in column 3 other kind of violent attacks against civilians
by organized groups, while in the last two columns we look at less intense and deadly
conflict types like protests (column 4) and riots (column 5). In line with the mechanism
we have in mind, we observe an effect only for larger scale type of conflicts. Individu-
als do not move upstream just for rioting or protesting against the government, but to
fight over access to water resources.

Additional controls In Table A.9 we show that our results are robust to controlling
for other factors which have been associated with conflict. Specifically, we control for
(log) population, yearly average temperature and yearly average temperature during
the day. Finally, we check whether results are robust to controlling for lagged con-
flict incidence. The estimates of our main coefficient of interest are unaffected by the
inclusion of the controls.

Alternative neighborhood and rainfall shocks In the appendix, from Table A.5 to
Table A.8, we conduct additional robustness checks to ensure that our results are not
influenced by the specific parameter choices we have made. Specifically, Tables A.5
and A.6 explore alternative thresholds for defining a rainfall shock, using different
percentiles as cutoff points in the distribution. Conversely, Tables A.7 and A.8 examine
the effects of using alternate radii of 160 km and 200 km, respectively, to define a cell
neighborhood. Across all these analyses, our primary coefficient of interest maintains
a magnitude and significance level similar to that estimated in our main specification
(column 5 of Table 1).

4.4 Heterogeneous characteristics affecting conflicts

In this section, we explore the characteristics that increase the likelihood of conflicts
arising over water resources.

Agricultural land and returns to water access We expect a higher likelihood of con-
flict in areas where the returns to accessing water are higher. Given the agrarian nature
of the African continent, one of the main ways to exploit water resources is agricul-
ture. To scrutinize this channel we split the sample between cells with high and low
level of agricultural ground cover. In particular, in columns 1 and 2 of Table 3 we split
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the sample according to whether agriculture is present or totally absent in the cell. On
the other hand, in columns 3 and 4 we separate the sample according to the median
level of agricultural ground cover. We can detect an impact of downstream shocks
only in localities where there is at least a minimum level of agriculture. This finding
is in line with these conflicts being over the control of factors for economic produc-
tion (McGuirk and Burke, 2020). Indeed, the joint presence of water and agricultural
land, makes these cells particularly attractive targets for invasion in case of droughts
downstream.

Table 3: Agricultural Land

Incidence (ACLED)
Agri Yes Agri No Agri50 H Agri50 L

(1) (2) (3) (4)

Water Discharge 0.0010 0.0019∗∗ 0.0016 0.0010
(0.0012) (0.0009) (0.0015) (0.0011)

Water Discharge × Shock Down 0.0014∗∗ 0.0001 0.0018∗∗ 0.0010
(0.0006) (0.0019) (0.0007) (0.0007)

Water Discharge × Shock Up -0.0003 0.0000 -0.0005 -0.0008
(0.0006) (0.0020) (0.0008) (0.0007)

Shock Own -0.0024 0.0000 -0.0028 -0.0015
(0.0023) (0.0013) (0.0028) (0.0017)

Shock Down -0.0009 0.0008 -0.0058 0.0025
(0.0033) (0.0016) (0.0046) (0.0017)

Shock Up -0.0010 0.0001 0.0016 -0.0007
(0.0038) (0.0016) (0.0053) (0.0018)

Cell FE ✓ ✓ ✓ ✓

Country-Year FE ✓ ✓ ✓ ✓

Dep. Var. Mean 0.11341 0.00995 0.13336 0.03066
R2 0.41907 0.28129 0.43298 0.33517
Cells 7,124 3,104 5,114 5,114
Observations 178,100 77,600 127,850 127,850

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. In columns (1) and (2)
we split the sample according to the presence or absence of agricultural land. In columns (3) and (4) we split the sample
according to higher-lower than the median presence of agricultural land. Data for agricultural land are taken from McGuirk and
Burke (2020). Water Discharge is the natural logarithm of the average water discharge present in a cell during a given year. Shock
is an indicator variable taking value 1 if a location experiences a drought (as defined in Section 3), upstream (Up), downstream
(Down) or within the unit of observation (Own). The sample covers the years in the interval 1997-2021. Clustered standard errors
by cell are reported in parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Ethnic diversity and cooperation costs Freshwater resources may be distributed un-
equally, yet different groups can still cooperate and manage them together. For in-
stance, according to the hydraulic theory, the formation of early states was partly mo-
tivated by the necessity of institutions for large-scale irrigation projects (Allen et al.,
2020). Moreover, a symbiotic system has often existed between farmers and herders,
with herders migrating to farmers’ land during dry seasons. This traditional arrange-
ment, especially when farmers’ land is situated near rivers, can be seen as a norm that
enables efficient sharing of water resources among different groups during periods of
limited rainfall. Scarce rainfall in Africa due to climate change threatens established
water-sharing institutions, leading to their collapse.

We explore this potential mechanism in Table 4, considering three different mea-
sures of imbalance water allocation as detailed in Section 3.2. In columns 1 and 2 we
split the sample between cells belonging to neighborhoods with high-low levels of
polarization in water access between different ethnic groups. This measure takes the
maximum value if in the neighborhood are present two groups owning 50% of the to-
tal existing water. The more polarized the access to water is, the higher should be the
incentive for groups to appropriate the resource from other populations when they are
hit by a shock. As we can observe in Table 4 we only can detect an impact of rainfall
shocks in highly polarized neighborhoods. In columns 3 to 6 we do a similar exercise
splitting the sample on the basis of two different measures of inequality in water own-
ership: Gini and Theil indexes. As expected, only shocks happening in markets where
inequality in water access is higher have an impact on conflicts incidence. The coeffi-
cients corresponding to the interaction Water Discharge × Shock Down are way larger
and significant in odd columns, indicating that cooperation in water sharing becomes
more complex in a context where there is inequality in access to water across different
ethnic groups.

16



Table 4: Ethnic diversity and cooperation costs

Incidence (ACLED)
RQ H RQ L Gini H Gini L Theil H Theil L

(1) (2) (3) (4) (5) (6)

Water Discharge 0.0014 0.0016 0.0010 0.0022∗∗ 0.0017 0.0019∗

(0.0013) (0.0015) (0.0016) (0.0011) (0.0016) (0.0011)
Water Discharge × Shock Down 0.0017∗∗∗ 0.0003 0.0017∗∗ 0.0006 0.0018∗∗∗ 0.0008

(0.0007) (0.0006) (0.0007) (0.0007) (0.0007) (0.0007)
Water Discharge × Shock Up -0.0001 -0.0008 -0.0006 -0.0004 -0.0008 -0.0001

(0.0007) (0.0006) (0.0008) (0.0007) (0.0008) (0.0007)
Shock Own -0.0010 -0.0012 -0.0033 0.0007 -0.0031 0.0007

(0.0025) (0.0024) (0.0027) (0.0020) (0.0027) (0.0019)
Shock Down -0.0026 0.0028 -0.0029 0.0022 -0.0044 0.0025

(0.0031) (0.0023) (0.0040) (0.0019) (0.0039) (0.0019)
Shock Up 0.0028 -0.0031 0.0022 -0.0018 0.0036 -0.0026

(0.0034) (0.0026) (0.0046) (0.0022) (0.0045) (0.0021)

Cell FE ✓ ✓ ✓ ✓ ✓ ✓

Country-Year FE ✓ ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08727 0.07869 0.11787 0.04808 0.11907 0.04687
R2 0.41479 0.44586 0.42949 0.39843 0.42989 0.39681
Cells 5,054 5,052 5,054 5,052 5,054 5,052
Observations 126,350 126,300 126,350 126,300 126,350 126,300

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. In columns (1) and (2)
we split the sample according to high-low value of Reynal-Querol polarization index, computed as detailed in Section 3. In
columns (3) and (4) we split the sample according to high-low values of Gini index, computed as detailed in Section 3. In
columns (5) and (6) we split the sample according to high-low values of the Theil index computed as detailed in Section 3. Water
Discharge is the natural logarithm of the average water discharge present in a cell during a given year. Shock is an indicator
variable taking value 1 if a location experiences a drought (as defined in Section 3), upstream (Up), downstream (Down) or
within the unit of observation (Own). The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are
reported in parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.

Water stress Climate change might generate an increase in conflicts over water re-
sources not just through more frequent droughts, but in the longer run, by deplet-
ing the quantity of water present in a given area. Desertification processes are well
known to affect some areas of the continent like the Sahel region and more in general,
a decrease in water quantity in given areas might break economic equilibria existing
among the populations living along river bodies. To explore this possible mechanism,
we create a measure of water stress at cell level. In particular, we consider the dif-
ference in discharge between the average water presence in a cell during our sample
period and the first 10 years for which the variable discharge is available (from 1979 to
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1988). Looking at the spatial distribution of the variable (see Figure A.8) we can notice
how, in most of the continent, there has been a reduction in water quantity over the
last 40 years. In columns 1 and 2 of Table 5 we divide the sample according to higher
or lower than the median increase in water presence, while in columns 3 and 4 we
split the sample according to a positive or negative change over time in discharge. We
can estimate a significant impact of precipitation shocks only in those cells which have
experienced a reduction in water presence over time.

Table 5: Water Stress

Incidence (ACLED)
Above Median Change Below Median Change Positive Change Negative Change

(1) (2) (3) (4)

Water Discharge 0.0017∗ -0.0013 0.0019∗ 0.0007
(0.0010) (0.0023) (0.0010) (0.0019)

Water Discharge × Shock Down 0.0001 0.0019∗∗∗ -0.0007 0.0015∗∗∗

(0.0007) (0.0006) (0.0010) (0.0005)
Water Discharge × Shock Up 0.0003 -0.0004 0.0012 -0.0005

(0.0007) (0.0006) (0.0010) (0.0006)
Shock Own -0.0007 -0.0002 0.0064∗∗ -0.0046∗∗

(0.0026) (0.0023) (0.0028) (0.0021)
Shock Down 0.0055∗∗ -0.0028 0.0023 -0.0001

(0.0026) (0.0026) (0.0028) (0.0024)
Shock Up -0.0004 -0.0023 -0.0025 -0.0007

(0.0028) (0.0030) (0.0028) (0.0029)

Cell FE ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08827 0.07593 0.07136 0.08813
R2 0.43971 0.41519 0.42857 0.42647
Cells 5,106 5,105 3,670 6,541
Observations 127,650 127,625 91,750 163,525

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. In columns (1) and (2)
we split the sample according to higher-lower than the median water stress as defined in Section 4. In columns (3) and (4) we
split the sample according to positive or negative change in water presence between our sample period and the first ten years of
water discharge data (1979-1988). Water Discharge is the natural logarithm of the average water discharge present in a cell during
a given year. Shock is an indicator variable taking value 1 if a location experiences a drought (as defined in Section 3), upstream
(Up), downstream (Down) or within the unit of observation (Own). The sample covers the years in the interval 1997-2021.
Clustered standard errors by cell are reported in parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, ***
p < 0.01.

Institutions A key aspect that might ease the consequences of a drought is the abil-
ity of the state to redistribute resources, build infrastructures apt to prevent crises and
ensuring property rights protection to avoid violent appropriation of water. In line
with the research by Michalopoulos and Papaioannou (2014), we employ the World-
wide Governance Indicator from the World Bank (Kaufmann et al., 2011) as measures
of institutional quality,10 recognizing its potential significance in facilitating water re-
distribution under conditions of scarcity. Our analysis primarily considers four key

10In order to avoid reverse causality issues we consider values of the indexes for the pre-sample
period (year 1996).
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elements: the type of institutional governance, rule of law guarantee, absence of cor-
ruption and government effectiveness. In the first two columns of Table 6 we split the
sample according to high-low level of democratic governance in a country.11 We ex-
plore whether more democratic systems, characterized by stability and participatory
governance, are better equipped to encourage cooperative responses to climate-related
challenges. In columns 3 and 4 the focus shifts on high-low levels of rule of law. The
idea is that, a better definition and enforcement of property rights are fundamental to
managing resources efficiently and resolving disputes, especially in times of environ-
mental stress. In columns 5 and 6 we look into a metric of state capacity, government
effectiveness, reflecting the quality of public services and the efficacy of policy for-
mulation and implementation. Higher government effectiveness might contribute to
the construction of appropriate infrastructures to cope with climate shocks, but also
to respond more rapidly to crises. Lastly, in columns 7 and 8 we split the sample ac-
cording to high-low levels of corruption. The underlying idea is that property rights
protection and government effectiveness necessitate an environment free from corrup-
tion. Across all these dimensions, we observe a sizable and significant effect for our
primary coefficient of interest only in even columns, indicating countries with weaker
institutional quality metrics.
Even if this is mostly correlational evidence and despite we do not have specific data
related to effectiveness in water management by states, these results seem to suggest
that better institutions might be effective in preventing local violence for water re-
sources in case of climate shocks.

11In particular, we create a measure of democratic governance by computing the mean between "voice
and accountability" and "political stability" indexes at country level.
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Table 6: Institutional Quality

Incidence (ACLED)
Dem H Dem L RLaw H RLaw L Gov Eff H Gov Eff L Corrupt H Corrupt L

(1) (2) (3) (4) (5) (6) (7) (8)

Water Discharge 0.0004 0.0016 -0.0007 0.0031 0.0018∗∗ -0.0007 -0.0008 0.0036∗

(0.0008) (0.0022) (0.0009) (0.0019) (0.0009) (0.0023) (0.0009) (0.0020)
Water Discharge × Shock Down 0.0001 0.0017∗∗∗ 0.0006 0.0016∗∗∗ 0.0005 0.0017∗∗∗ 0.0005 0.0012∗∗

(0.0006) (0.0006) (0.0007) (0.0006) (0.0007) (0.0006) (0.0006) (0.0006)
Water Discharge × Shock Up 0.0003 -0.0005 0.0005 -0.0006 -0.0004 0.0002 -0.0003 -0.0001

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0006) (0.0007)
Shock Own 0.0012 -0.0015 -0.0011 0.0007 0.0036 -0.0033 -0.0015 0.0012

(0.0023) (0.0025) (0.0024) (0.0024) (0.0023) (0.0025) (0.0020) (0.0027)
Shock Down -0.0027 0.0056∗ -0.0025 0.0049∗ 0.0027 -0.0006 -0.0015 0.0052

(0.0022) (0.0029) (0.0024) (0.0027) (0.0022) (0.0030) (0.0019) (0.0033)
Shock Up -0.0041 0.0010 -0.0035 0.0003 0.0015 -0.0050 -0.0017 -0.0008

(0.0025) (0.0033) (0.0027) (0.0032) (0.0024) (0.0034) (0.0022) (0.0037)

Cell FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.05527 0.11018 0.06696 0.09751 0.06949 0.09575 0.05603 0.10840
R2 0.36197 0.44512 0.37419 0.45222 0.41544 0.42323 0.41074 0.41853
Cells 5,247 4,981 5,188 5,040 5,351 4,877 5,154 5,074
Observations 131,175 124,525 129,700 126,000 133,775 121,925 128,850 126,850

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. In different columns we
split the sample according to higher or lower than the median values in the sample of different variables indicating institutional
quality. In particular in columns (1) and (2) we consider democratic governance (which takes into account measures of political
stability and voice and accountability), in columns (3) and (4) rule of law, in columns (5) and (6) government effectiveness and in
columns (7) and (8) corruption. The indexes are taken from Kaufmann et al. (2011). Water Discharge is the natural logarithm of
the average water discharge present in a cell during a given year. Shock is an indicator variable taking value 1 if a location
experiences a drought (as defined in Section 3), upstream (Up), downstream (Down) or within the unit of observation (Own). The
sample covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in parentheses. Statistical
significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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5 Conclusion

This paper examines the influence of competition for water resources on local vio-
lence across the African continent over the period 1997-2021. By combining detailed
data on hydrology, river network topology, and weather patterns, we demonstrate
that adverse rainfall conditions drive individuals to seek water access in upstream
areas with abundant water resources. Our analysis focuses on major conflict events
such as battles and violence against civilians. When a downstream cell experiences a
rainfall shock, the likelihood of conflict is 0.6 percentage points larger for a cell with
high water presence with respect to a cell where water is scarce. This translates to a
7.30% increase in conflict likelihood with respect to the mean conflict incidence in our
sample. Notably, our results remain robust across various "water richness" measures,
diverse conflict datasets, and when considering other possible confounders like tem-
perature and population.

Given Africa’s predominantly agrarian economy, the economic returns from wa-
ter access should be higher in areas with significant agricultural output. Consistently
with our expectations, we find that the effects are driven by places characterized by
higher presence of agriculture.

Additionally, we find that conflict over water resources is more likely in regions
characterized by higher cooperation costs, i.e. when water is unevenly distributed
across different ethnic groups. Employing three distinct measures of water distribu-
tion across ethnicities - polarization, Gini, and Theil indexes - our analysis reveals that
greater disparity in water access among different ethnic groups is associated with an
increased risk of conflict.

Climate change plays a role not only by increasing the frequency of droughts, but
also altering the distribution of surface water, giving rise to desertification processes.
We find that the effect is mainly concentrated in those areas where water has been de-
creasing in the last forty years, possibly destabilizing pre-existing equilibria in terms
of water sharing and management.

Finally, we show that institutions, assessed by various World Bank indices, can
play a pivotal role in this context. Stronger institutions can mitigate the challenges
posed by water scarcity through the development of appropriate infrastructures and
the implementation of redistribution schemes. Such strategies can facilitate the eq-
uitable allocation of water resources between regions abundant in water and those
facing scarcity.

Our results suggest that policymakers should take into account the unequal dis-
tribution of freshwater resources when thinking about climate-conflict relationship.
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Moreover, we highlight the rivers network’s structure as an important transmission
channel for climate shocks. While we focus on local violence, this structure can shape
the relationship between water scarcity and conflict at a larger scale. A prime exam-
ple is the ongoing geopolitical tensions surrounding the construction of the Grand
Ethiopian Renaissance Dam (Climate Diplomacy, 2023a). More generally, taking into
account the river network is key to understanding how water management policies
will affect neighboring regions and countries. This is crucial in a future where climate-
related shocks are expected to become increasingly frequent and water scarcity a more
acute problem.
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A Appendix

A.1 Upstream - Downstream

In this section we describe in detail the construction of the rivers network relation-
ships between grid cells sample units. From the hydrology literature (Harrigan et al.,
2020), as mentioned in section 3, we take the spatial breakdown of the entire African
continent in river basins. A basin can be defined as the area of land drained by a river
and its branches. The basins shapefiles are available at different levels of disaggre-
gation; following Eberle (2020) and Strobl and Strobl (2011) we choose level 7 whose
basins have an average area comparable to the cells we use in the analysis. Following
the Pfafstetter classification system (see Verdin and Verdin, 1999 for a comprehensive
explanation about how the system works), for each basin we have information about
its position along the river network. In order to understand the relative positioning
of our grid cells in terms of up-downstream relationship, we need to assign each cell
to a river basin. Given the irregular shape of river basins, there are many different
criteria one can use to perform this matching. Since our main objective is to study the
interdependence of water resources between different regions, our main criterion to
assign a cell to basin is the relative importance in terms of water discharge of the cell’s
area drained by the basin. In particular, for each intersection between river basins and
a given cell we compute the average discharge quantity; then, we assign each cell to
the basin whose intersection contains the highest water amount.

We illustrate the methodology by taking as example the confluence of Niger and
Benue rivers. In the top panel of Figure A.1 we overlay the neighborhood of all the
cells whose centroid is within 180 Km from the dark yellow cell at the center of the
figure, with the river basins present in the area. The orange grid represents the neigh-
borhood of cells, while the basins are colored on the basis of the average discharge
presence. In the bottom panel we display the corresponding assignment of the cells.
In light yellow are represented cells whose centroid is located within 180 Km from
the reference cell (the cell in the middle in dark yellow) and that do not have any
up-downstream relationship with respect to it. The orange (red) cells are those located
upstream (downstream) according to our definition. The blue lines represent the rivers
with highest water presence in the area (which are indeed the Niger and Benue).
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A.2 Figures

Figure A.1: Niger river upstream and downstream relationship

Notes: The figure shows, by way of example, a section of Niger river to illustrate how we build the upstream-downstream
relationships. In the top panel we superimpose the grid for the neighborhood (cells within 180 Km radius) of the yellow cell in
the center of the figure with the river basins shapefile colored according to the average water discharge present in each of them.
In the bottom panel we show the resulting upstream-downstream relationships between the different cells according to the
methodology explained in appedix A.1. Orange cells are those located upstream within the neighborhood of the main cell (in
dark yellow), while the red cell are those that we consider downstream with respect to it. Light yellow cells are those coded as
neither upstream nor downstream with respect to the main cell.
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Figure A.2: The grid

Notes: Grid of 0.5◦ × 0.5◦ cells covering the African continent that we use for the analysis.
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Figure A.3: Conflict (ACLED)

Notes: Spatial distribution of our main dependent variable, conflict incidence, for the period 1997-2021. Darker shadings indicate
cells with a higher proportion of years with at least one conflict incident, based on data from the Armed Conflict Location and
Event Data Project (ACLED).
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Figure A.4: Average discharge (cell level)

Notes: Cell-level (Log) average yearly discharge in m3/s over the sample period 1997-2021. Darker color indicates areas with
higher average discharge. Water discharge data have been taken from Harrigan et al. (2020).
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Figure A.5: Water Monopolist

Notes: In the map are represented in blue cells which are coded as water monopolist (see Section 3 for details on the definition)
for the majority of the years during the sample period 1997-2021.
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Figure A.6: Water Monopolist +

Notes: In the map are represented in blue cells which are coded as water monopolist + (see Section 3 for details on the definition)
for the majority of the years during the sample period 1997-2021.
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Figure A.7: Water Inequality and Polarization

(a) Polarization index

(b) Gini index (c) Theil index

Notes: The maps display the spatial distribution of three different measures of water allocation between different ethnic groups
at neighborhood level. In top panel (a), we report polarization measure of water ownership, in panel (b) the Gini index, while in
panel (c) we report the Theil index distribution. Darker colors indicate higher values of the respective indexes. Grey cells
represent missing values.
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Figure A.8: Water Stress

Notes: The map displays the spatial distribution of the measure of water stress that we use. Darker colors indicate higher level of
long term negative changes in water availability. The construction of the measure is detailed in section 4. Discharge data are
taken from Harrigan et al. (2020).
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A.3 Tables

Table A.1: Summary statistics

Variable Mean SD Min Median Max N

Panel A: Conflicts

Incidence (ACLED) 0.0820 0.2744 0 0 1.0000 255,700
Incidence Battles 0.0543 0.2266 0 0 1.0000 255,700
Incidence Violence 0.0557 0.2293 0 0 1.0000 255,700
Incidence Protests 0.0415 0.1995 0 0 1.0000 255,700
Incidence Riots 0.0351 0.1840 0 0 1.0000 255,700
Incidence (GED) 0.0304 0.1716 0 0 1.0000 337,524

Panel B: Water measures

Water Discharge (ln) 3.6334 3.2151 0 3.0318 14.131 255,700
Water Monopolist 0.0172 0.1299 0 0 1.0000 255,700
Water Monopolist + 0.0125 0.1113 0 0 1.0000 255,700

Panel C: Rainfall shocks

Shock Down 0.2556 0.4362 0 0 1.0000 255,700
Shock Down p10 0.1742 0.3793 0 0 1.0000 255,700
Shock Down p20 0.3337 0.4715 0 0 1.0000 255,700
Shock Own 0.1971 0.3978 0 0 1.0000 255,700
Shock Own p10 0.1273 0.3333 0 0 1.0000 255,700
Shock Own p20 0.2664 0.4421 0 0 1.0000 255,700
Shock Up 0.1755 0.3804 0 0 1.0000 255,700
Shock Up p10 0.1225 0.3278 0 0 1.0000 255,700
Shock Up p20 0.2235 0.4166 0 0 1.0000 255,700

Panel D: Other variables

Agricultural Cover 15.889 24.458 0 2.3642 99.917 255,700
Discharge Long Diff 195.79 2,479.2 -100.00 -16.739 99,670 255,275
Democratic -0.9225 0.8486 -2.2008 -0.9961 0.9389 255,700
Rule of Law -0.9089 0.6794 -2.1447 -1.0216 0.5845 255,700
Government Effectiveness -0.7418 0.6503 -1.9599 -0.9236 1.0205 255,700
Corruption -0.7347 0.6259 -1.6479 -0.8607 0.8180 255,700
RQ Index 0.5050 0.3053 0 0.5665 1.0000 252,650
Gini Index 0.5614 0.2472 0 0.6171 0.9712 252,650
Theil Index 0.8042 0.5596 0 0.7192 3.3539 252,650
Temperature (day) 27.306 3.4748 10.836 27.239 37.245 255,700
Temperature 24.462 3.4479 8.1089 24.596 34.057 255,700
Population 94,578 317,839 0 20,116 18,604,352 255,700

Notes: The table reports summary statistics for the main variables used in the analysis. The unit of observation is a 0.5° × 0.5°
grid cell and year. In Panel A we report summary statistics for the measures of conflicts used as dependent variables. In Panel B
we report the summary statistics for the measures of water presence. In Panel C we report summary statistics for the measures of
rainfall shocks. Finally, in Panel D we report summary statistics for the rest of the variables used for the heterogeneity analysis or
as controls.
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Table A.2: Conley standard errors

Incidence (ACLED)
(1) (2) (3) (4) (5)

Water Discharge 0.0010 0.0007 0.0010 0.0009 0.0009
(0.0013) (0.0013) (0.0012) (0.0012) (0.0012)

Water Discharge × Shock Down 0.0011∗∗ 0.0011∗∗ 0.0012∗∗

(0.0006) (0.0006) (0.0006)
Water Discharge × Shock Up 0.0003 0.0003 -0.0002

(0.0006) (0.0006) (0.0006)
Shock Down 0.0008 0.0010 0.0009

(0.0024) (0.0024) (0.0023)
Shock Up -0.0018 -0.0024 -0.0014

(0.0025) (0.0025) (0.0024)
Shock Own -0.0005 0.0020 0.0000

(0.0021) (0.0021) (0.0021)

Cell FE ✓ ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201 0.08201 0.08201
R2 0.42101 0.42095 0.42101 0.42096 0.42101
Cells 10,228 10,228 10,228 10,228 10,228
Observations 255,700 255,700 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Water Discharge is the
natural logarithm of the average water discharge present in a cell during a given year. Shock is an indicator variable taking value
1 if a location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). The sample covers the years in the interval 1997-2021. Conley standard errors with a spatial lag of 500 Km
and infinite serial correlation are reported in parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, ***
p < 0.01.

37



Table A.3: Alternative data on conflict

Incidence (GED Geo3)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure -0.0003 0.0147∗∗ 0.0129∗

(0.0006) (0.0072) (0.0070)
Water Measure × Shock Down 0.0005∗ 0.0143∗ 0.0305∗∗

(0.0003) (0.0086) (0.0124)
Water Measure × Shock Up -0.0004 -0.0018 -0.0058

(0.0003) (0.0079) (0.0095)
Shock Own 0.0012 0.0012 0.0012

(0.0011) (0.0011) (0.0011)
Shock Down 0.0001 0.0017∗ 0.0016∗

(0.0011) (0.0010) (0.0010)
Shock Up -0.0007 -0.0021∗ -0.0021∗∗

(0.0013) (0.0011) (0.0011)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.03039 0.03039 0.03039
R2 0.28764 0.28768 0.28771
Cells 10,228 10,228 10,228
Observations 337,524 337,524 337,524

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Differently from our
main analysis we construct the dependent variable using GED dataset. Water Discharge is the natural logarithm of the average
water discharge present in a cell during a given year. Shock is an indicator variable taking value 1 if a location experiences a
drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of observation (Own). The sample
covers the years in the interval 1989-2020. Clustered standard errors by cell are reported in parentheses. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.4: Alternative conflict categories

Incidence (ACLED) Incidence Battles Incidence Violence Incidence Protests Incidence Riots
(1) (2) (3) (4) (5)

Water Discharge 0.0009 0.0013∗ -0.0008 0.0006 -0.0006
(0.0009) (0.0008) (0.0008) (0.0007) (0.0006)

Water Discharge × Shock Down 0.0012∗∗∗ 0.0013∗∗∗ 0.0011∗∗∗ 0.0001 0.0001
(0.0004) (0.0004) (0.0004) (0.0003) (0.0003)

Water Discharge × Shock Up -0.0002 -0.0003 0.0002 0.0002 0.0005
(0.0005) (0.0004) (0.0004) (0.0003) (0.0003)

Shock Own 0.0000 0.0004 -0.0011 -0.0011 -0.0030∗∗

(0.0017) (0.0015) (0.0015) (0.0013) (0.0012)
Shock Down 0.0009 0.0005 0.0001 -0.0004 -0.0010

(0.0018) (0.0016) (0.0015) (0.0014) (0.0012)
Shock Up -0.0014 -0.0032∗ -0.0011 -0.0007 -0.0016

(0.0021) (0.0018) (0.0018) (0.0016) (0.0014)

Cell FE ✓ ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.05431 0.05570 0.04152 0.03507
R2 0.42101 0.36651 0.38268 0.39875 0.37082
Cells 10,228 10,228 10,228 10,228 10,228
Observations 255,700 255,700 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one conflict event occurs in a cell and year. In column (1) we report
estimates using our main dependent variable which includes ACLED battles and violence against civilians. In columns (2) and
(3) we separate the two components of the main dependent variables and consider battles and violence against civilians
separately. In columns (4) and (5) we consider less deadly type of conflict events such as protests and riots. Water Discharge is the
natural logarithm of the average water discharge present in a cell during a given year. Shock is an indicator variable taking value
1 if a location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). The sample covers the years in the interval 1989-2020. Clustered standard errors by cell are reported in
parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.5: Alternative rainfall shocks G10

Incidence (ACLED)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure 0.0010 0.0125 0.0163
(0.0009) (0.0095) (0.0104)

Water Measure × Shock Down 0.0014∗∗∗ 0.0275∗∗ 0.0458∗∗∗

(0.0005) (0.0137) (0.0172)
Water Measure × Shock Up 0.0003 -0.0073 -0.0104

(0.0005) (0.0120) (0.0138)
Shock Own 0.0006 0.0002 0.0002

(0.0020) (0.0020) (0.0020)
Shock Down -0.0003 0.0043∗∗ 0.0043∗∗

(0.0022) (0.0017) (0.0017)
Shock Up -0.0008 0.0009 0.0009

(0.0024) (0.0020) (0.0020)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201
R2 0.42102 0.42101 0.42103
Cells 10,228 10,228 10,228
Observations 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Water Measure indicates
generically a measure of water quantity which varies between columns. In column (1) it is the natural logarithm of the average
water discharge present in a cell during a given year (Water Discharge). In column (2) it is an indicator variable equal to 1 if the
cell is the one with the highest water discharge in a neighborhood in a given year (Water Monopolist). In column (3) it is an
indicator variable equal to 1 if the cell is the one with the highest water discharge in a neighborhood in a given year and the
discharge is higher than the median level in the sample for that year (Water Monopolist +). Shock is an indicator variable taking
value 1 if a location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). Differently from the main analysis we define precipitation shocks as precipitation level in a cell-year below
the 10th percentile in the long term distribution (see 3 for further details in the construction of precipitation shocks). The sample
covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in parentheses. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.6: Alternative rainfall shocks G20

Incidence (ACLED)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure 0.0010 0.0095 0.0115
(0.0010) (0.0100) (0.0108)

Water Measure × Shock Down 0.0013∗∗∗ 0.0218∗∗ 0.0386∗∗∗

(0.0004) (0.0104) (0.0143)
Water Measure × Shock Up -0.0007 -0.0009 -0.0027

(0.0005) (0.0105) (0.0128)
Shock Own 0.0031∗∗ 0.0028∗ 0.0028∗

(0.0015) (0.0015) (0.0015)
Shock Down -0.0031∗ 0.0008 0.0008

(0.0017) (0.0014) (0.0014)
Shock Up 0.0003 -0.0023 -0.0023

(0.0019) (0.0016) (0.0016)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201
R2 0.42100 0.42100 0.42103
Cells 10,228 10,228 10,228
Observations 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Water Measure indicates
generically a measure of water quantity which varies between columns. In column (1) it is the natural logarithm of the average
water discharge present in a cell during a given year (Water Discharge). In column (2) it is an indicator variable equal to 1 if the
cell is the one with the highest water discharge in a neighborhood in a given year (Water Monopolist). In column (3) it is an
indicator variable equal to 1 if the cell is the one with the highest water discharge in a neighborhood in a given year and the
discharge is higher than the median level in the sample for that year (Water Monopolist +). Shock is an indicator variable taking
value 1 if a location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of
observation (Own). Differently from the main analysis we define precipitation shocks as precipitation level in a cell-year below
the 20th percentile in the long term distribution (see 3 for further details in the construction of precipitation shocks). The sample
covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in parentheses. Statistical significance is
represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.7: Alternative radius 160 Km

Incidence (ACLED)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure 0.0009 0.0102 0.0125
(0.0009) (0.0080) (0.0087)

Water Measure × Shock Down 0.0014∗∗∗ 0.0133 0.0224
(0.0005) (0.0109) (0.0144)

Water Measure × Shock Up -0.0001 -0.0059 -0.0066
(0.0005) (0.0104) (0.0125)

Shock Own -0.0001 -0.0005 -0.0005
(0.0017) (0.0017) (0.0017)

Shock Down 0.0002 0.0049∗∗∗ 0.0049∗∗∗

(0.0020) (0.0016) (0.0016)
Shock Up -0.0015 -0.0015 -0.0016

(0.0022) (0.0018) (0.0018)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201
R2 0.42102 0.42100 0.42101
Cells 10,228 10,228 10,228
Observations 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Differently from the
main analysis, as robustness exercise, we use 160 Km radius to define a cell neighborhood. Water Measure indicates generically a
measure of water quantity which varies between columns. In column (1) it is the natural logarithm of the average water
discharge present in a cell during a given year (Water Discharge). In column (2) it is an indicator variable equal to 1 if the cell is
the one with the highest water discharge in a neighborhood in a given year (Water Monopolist). In column (3) it is an indicator
variable equal to 1 if the cell is the one with the highest water discharge in a neighborhood in a given year and the discharge is
higher than the median level in the sample for that year (Water Monopolist +). Shock is an indicator variable taking value 1 if a
location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of observation
(Own). The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in parentheses.
Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.8: Alternative radius 200 Km

Incidence (ACLED)
Water Discharge Water Monopolist Water Monopolist +

(1) (2) (3)

Water Measure 0.0009 0.0104 0.0093
(0.0009) (0.0106) (0.0112)

Water Measure × Shock Down 0.0010∗∗ 0.0217∗ 0.0341∗∗

(0.0004) (0.0123) (0.0168)
Water Measure × Shock Up -0.0001 -0.0053 -0.0061

(0.0005) (0.0114) (0.0133)
Shock Own 0.0003 -0.0001 -0.0001

(0.0017) (0.0017) (0.0017)
Shock Down 0.0008 0.0042∗∗∗ 0.0041∗∗∗

(0.0018) (0.0015) (0.0015)
Shock Up -0.0018 -0.0018 -0.0019

(0.0020) (0.0017) (0.0017)

Cell FE ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201
R2 0.42100 0.42100 0.42101
Cells 10,228 10,228 10,228
Observations 255,700 255,700 255,700

Notes: The table reports estimated coefficients from equation (1). The unit of observation is a 0.5° × 0.5° grid cell and year. The
dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year. Differently from the
main analysis, as robustness exercise, we use 200 Km radius to define a cell neighborhood. Water Measure indicates generically a
measure of water quantity which varies between columns. In column (1) it is the natural logarithm of the average water
discharge present in a cell during a given year (Water Discharge). In column (2) it is an indicator variable equal to 1 if the cell is
the one with the highest water discharge in a neighborhood in a given year (Water Monopolist). In column (3) it is an indicator
variable equal to 1 if the cell is the one with the highest water discharge in a neighborhood in a given year and the discharge is
higher than the median level in the sample for that year (Water Monopolist +). Shock is an indicator variable taking value 1 if a
location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or within the unit of observation
(Own). The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are reported in parentheses.
Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.9: Additional Controls

Incidence (ACLED)
(1) (2) (3) (4)

Water Discharge 0.0009 0.0013 0.0015 0.0008
(0.0009) (0.0010) (0.0010) (0.0009)

Water Discharge × Shock Down 0.0012∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗ 0.0011∗∗

(0.0004) (0.0004) (0.0004) (0.0004)
Water Discharge × Shock Up -0.0001 -0.0002 -0.0002 -0.0002

(0.0005) (0.0005) (0.0005) (0.0005)
Shock Own 0.0000 -0.0004 -0.0006 -0.0002

(0.0017) (0.0017) (0.0017) (0.0017)
Shock Down 0.0009 0.0007 0.0005 0.0004

(0.0018) (0.0018) (0.0018) (0.0018)
Shock Up -0.0014 -0.0015 -0.0015 -0.0002

(0.0021) (0.0021) (0.0021) (0.0020)
Log pop. 0.0046

(0.0048)
Temp. 0.0044∗∗

(0.0022)
Temp. (day) 0.0059∗∗∗

(0.0020)
Lagged Incidence 0.1701∗∗∗

(0.0051)

Cell FE ✓ ✓ ✓ ✓
Country-Year FE ✓ ✓ ✓ ✓

Dep. Var. Mean 0.08201 0.08201 0.08201 0.08366
R2 0.42102 0.42103 0.42104 0.44153
Cells 10,228 10,228 10,228 10,228
Observations 255,700 255,700 255,700 245,472

Notes: The table reports estimated coefficients from equation (1) with additional controls. The unit of observation is a 0.5° × 0.5°
grid cell and year. The dependent variable is a dummy that takes value 1 if at least one violent conflict occurs in a cell and year.
Water Discharge is the natural logarithm of the average water discharge present in a cell during a given year. Shock is an indicator
variable taking value 1 if a location experiences a drought (as defined in section 3), upstream (Up), downstream (Down) or
within the unit of observation (Own). In different columns we introduce additional controls to our baseline regression equation.
In particular in column (1) we control fro (Log) population in the cell, in column (2) we controls for average temperature over
the year, in column (3) we control for average daily temperature over the year and in column (4) we control for conflicts
happening in the previous year. The sample covers the years in the interval 1997-2021. Clustered standard errors by cell are
reported in parentheses. Statistical significance is represented by * p < 0.10, ** p < 0.05, *** p < 0.01.
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